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a b s t r a c t

A novel monomer containing pyridylazo-2-naphthoxyl group, 1-(1-(4-vinylbenzyloxy)naphthalen-2-yl)-
2-(pyridin-2-yl)diazene (VBNPA), was successfully synthesized and copolymerized with styrene (St) in
N,N-dimethyl formamide (DMF) via reversible addition–fragmentation chain transfer (RAFT) polymeri-
zation using 2-cyanoprop-2-yl-1-dithionaphthalate (CPDN) as RAFT agent. The polymerization behavior
exhibited ‘‘living’’/controlled characters. The obtained copolymer, poly(St-co-VBNPA), with pre-
determinable molecular weight and narrow molecular weight distribution can be used as a carrier in
metal ion detection and analysis via pre-concentration technique. The copolymer–metal ion (copper (Cu)
and europium (Eu)) complexes were prepared and characterized.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Trace metal ion detection and determination have received
particular attention at present due to their strong environmental
impact [1–4]. The direct determination of metal traces in various
samples usually requires an efficient pre-concentration step. This
pre-concentration step can bring the concentration of the analyte
within the dynamic measuring range of the detector and addi-
tionally to eliminate mixture effects, interferences, which cannot be
manipulated by the measuring device. Conventional separation and
pre-concentration techniques, such as coprecipitation, distillation,
liquid–liquid extraction, ion exchange, absorptive columns, etc.,
have been employed for the single- or multi-element extraction of
almost every metal from their initial matrices [5–8].

The azo dye 1-(2-pyridylazo)-2-naphthol (Scheme 1, PAN) is
a well-known simple, rapid, sensitive, and selective metallochromic
indicator for complexometric titration as well as a frequently used
colorimetric reagent for the quantitative and qualitative de-
termination of a variety of metal ions [9–13]. PAN acts as a tridentate
ligand complexing with metals through the ortho-hydroxyl group,
the azonitrogen near the phenolic ring, and the hetrocyclic nitrogen
atom, giving two five-membered chelate rings (Scheme 1) [14–18].
Some procedures have been developed for the determination of
x: þ86 512 65112796.
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metal ions after pre-concentration on PAN loaded silica gel column
or PAN coated alumina column [9,13,19,20]. In these methods, PAN
was dispersed by mixing with fixed phase. The relatively weak
linkage between PAN and carrier may cause unfavorable effects on
metal ion determination. Thus, PAN has been supported onto
chloromethylated polystyrene through an alkylation reaction [21].
Polymer-supported materials play an important role in the pre-
concentration techniques [22–25]. The widely used method of post-
modification of polymer may result in uncontrollable concentration
of functional groups on the carrier, which limited these materials
for practice using.

The fast development of ‘‘living’’/controlled radical polymeri-
zation (LRP) in recent decades offered us a powerful tool for
synthesizing polymer material with controlled structures. The most
versatile LRP methods have included nitroxide-mediated poly-
merization [26,27], atom transfer radical polymerization [28–31]
and reversible addition–fragmentation chain transfer (RAFT)
polymerization [32–35]. RAFT polymerization is probably the most
versatile process. It exhibits a high degree of compatibility with
a wide range of functional monomers [36–39].

In this work, we first prepared the functional copolymer by the
RAFT copolymerization of styrene with 1-(1-(4-vinylbenzyloxy)
naphthalen-2-yl)-2-(pyridin-2-yl)diazene (VBNPA, Scheme 2), in
N,N-dimethyl formamide (DMF). The main goal of this work is to
introduce PAN structure to side chain of the polymer with pre-
determined PAN content via LRP techniques, thus, the well-defined
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Scheme 2. Chemical structure of monomer VBNPA.

Fig. 1. 1H NMR spectrum of monomer VBNPA.
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Scheme 1. Chemical structures of PAN and its coordinated complex.
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soluble polymeric complexes with controllable polymeric structure
were obtained utilizing Cu(II) or Eu(III) complexation chemistry
with the PAN unit.

2. Experimental

2.1. Materials

Styrene (St, Shanghai Chemical Reagent Co. Ltd) was washed
with an aqueous solution of sodium hydroxide (5 wt%) for three
times and then with deionized water until neutralization. After
being dried with anhydrous magnesium sulfate, styrene was
distilled under reduced pressure. 2,20-Azobisisobutyronitrile (AIBN,
Shanghai Chemical Reagent Co. Ltd, 99%) was recrystallized twice
from ethanol, and then dried at room temperature under vacuum.
The RAFT agent, 2-cyanoprop-2-yl-1-dithionaphthalate (CPDN)
was synthesized as previously reported [40]. 1-(2-Pyridylazo)-2-
naphthol (Scheme 1, PAN, Akfa Aesar, 99%) and p-chloromethyl
styrene (Acros, 97%) were used as-received. Other reagents
(Shanghai Chemical Reagent Co. Ltd, China, analytical grade) were
purified with standard methods.

2.2. Synthesis of 1-(1-(4-vinylbenzyloxy)naphthalen-2-yl)-
2-(pyridin-2-yl)diazene

A suspension of 15.2 g (0.1 mol) p-chloromethyl styrene, 4.0 g
sodium hydroxide (0.1 mol), and 24.9 g PAN (0.1 mol) in 200 mL
tetrahydrofuran (THF) was prepared and stirred for 24 h at room
temperature. The resultant reaction mixture was precipitated in
large amount of water. A dull red solid was obtained. Pure VBNPA
was obtained after twice recrystallization from ethanol and once
silica gel chromatography with petroleum ether:ethyl acetate¼ 4:1,
10.5 g, 28.8%. 1H NMR (Fig. 1) d: 8.781–8.809 (d, 1H, pyridine-H),
8.668–8.642 (m, 2H, pyridine-H), 8.369–8.411 (m, 1H, pyridine-H),
7.084–7.897 (m, 10H, naphthalene-H, benzene-H), 6.700–6.744 (t,
1H, ]C(Ph)–H), 5.787–5.743 (d, 1H, ]CH–H), 5.471 (s, 2H, –CH2–
O–), 5.289–5.262 (d, 1H, ]CH–H). 13C NMR d: 181.424, 155.708,
148.834, 143.064, 138.561, 137.940, 137.096, 136.387, 130.801,
129.637, 129.142, 128.667, 127.803, 127.382, 127.281, 126.754,
122.505, 120.521, 114.814 (benzene, naphthalene, and pyridine-C),
133.697 (ethane, –CH–), 110.314 (ethane, CH2]), 69.098 (–CH2–O–).
Element. Anal. for C24H19N3O, calculated: C 78.88 H 5.24 N 11.50;
found: C 78.39 H 5.01 N 11.94. The purity was above 99% by HPLC.

2.3. RAFT copolymerization

A stock solution of 2.71 g (26 mmol) St, 9.50 g (26 mmol)
VBNPA, 0.0085 g (0.052 mmol) AIBN, 0.0423 g (0.156 mmol) CPDN
and 9.45 g DMF was prepared. Then every 3.0526 g solution was
placed in 5 mL ampules. The content was purged with argon for
approximately 10 min to eliminate oxygen. Then the ampules were
flame sealed. The polymerization reaction was performed at
appropriate temperature. After the desired reaction time, each
ampule was quenched in ice water, and opened. The content was
diluted with 2 mL THF, and precipitated in 300 mL methanol. The
polymer was obtained by filtration and dried at room temperature
under vacuum. Conversion was determined gravimetrically. The
block copolymer(PS-b-P(St-co-VBNPA)) was prepared using
obtained poly(St-co-VBNPA) as the macro-RAFT agent and styrene
as the second monomer with similar procedure.

2.4. Synthesis of copolymer–metal ion complexes

Poly(St-co-VBNPA) and 10 mL DMF were added to a 50-mL flask.
The mixture was heated slightly to form a homogeneous solution.
The molar amount of added Cu(CH3COO)2 or EuCl(PhCOCH2COPh)2

was equal to that of VBNPA unit in copolymer. The mixture was
stirred at 80 �C for 24 h. The complex was obtained by precipitation
into large amount of methanol followed by filtration. The sample
was purified by three cycles of dissolving in DMF and precipitating
into the methanol followed by washing with deionized water to
remove any unreacted low molecular metal complexes and dried at
room temperature under vacuum.

2.5. Characterization

The number average molecular weight (Mn) and molecular
weight distribution (Mw/Mn) of polymer were determined with
a Waters 1515 gel permeation chromatographer (GPC) equipped
with refractive index detector, using HR 1, HR 3, and HR 4 columns.
Calibration was performed with polystyrene (molecular weight
range 100–500,000) as standard samples. Tetrahydrofuran was
used as the eluent at a flow rate of 1.0 mL min�1 operated at 30 �C.
1H NMR spectra of the polymers were recorded on an INOVA400
nuclear magnetic resonance (NMR) instrument using CDCl3 as
a solvent and tetramethylsilane (TMS) as the internal standard.
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Elemental analyses (EA) of C, H and N were measured by the EA1110
CHND-S. The purity of CPDN was determined by Waters 515 HPLC:
the mixture of methanol and water (Vmethanol:Vwater¼ 80:20) was
used as the eluent at a flow rate of 0.8 mL min�1 operated at 30 �C
using C18 column and using Waters 996 as detector. The UV
absorption spectra of the sample were determined on a Shimadzu-
RF540 spectrophotometer. The fluorescence intensity was measured
by Edinburgh Instruments FLS920. The metal ion concentrations
were determined by VISTA-MPX CCD Simultaneous ICP-AES, and the
operation conditions are listed: plasma flow rate: 15 L min�1; carrier
gas (Ar) flow rate: 1.5 L min�1; incident power (kW): 1.2 kW;
vaporization press: 240 kPa.
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Fig. 3. Evolutions of Mn and Mw/Mn with monomer conversion for the RAFT
copolymerization of styrene and VBNPA in DMF with the molar ratio [St]0:[VBNPA]0:
[AIBN]0:[CPDN]0¼ 500:500:1:3 at 60 �C.
3. Results and discussion

3.1. The ‘‘living’’/controlled copolymerization of styrene and VBNPA

The copolymerization of styrene and VBNPA using CPDN as RAFT
agent in DMF was carried out. Fig. 2 shows the plots of ln([M]0/[M])
and conversion vs reaction time for the copolymerization
([St]0:[VBNPA]0:[AIBN]0:[CPDN]0¼ 500:500:1:3, 60 �C). In the
studied range of conversions, the relationship between ln([M]0/
[M]) and polymerization time was approximately linear, which
indicated that the propagating radical concentration was almost
constant and the side reactions could be neglected during the
polymerization. Fig. 3 shows that the Mn of the obtained copolymer
measured by GPC increased linearly with monomer conversion. The
value of Mw/Mn was remained in low and decreased with increasing
conversion, for example, the Mw/Mn decreased from 1.41 to 1.12
with the conversion increased from 20.7% to 88.6%.

The structure of obtained copolymer was characterized by 1H
NMR. A typical 1H NMR spectrum of copolymer (Mn¼ 13,300,
Mw/Mn¼ 1.16) is shown in Fig. 4, and the peaks were labeled to
assign the protons of each unit in it. The number of VBNPA in
each polymer chain was calculated according the integral data of
peaks d and eþ f. In this case, d:(eþ f)¼ 2.00:7.10, thus the
calculated molar ratio between VBNPA and St (m:n) containing in
copolymer was 0.42:0.58. The molar percentage of VBNPA unit
was also calculated by the following equation with elemental
analysis data according to the different concentration of N in the
monomer (St, VBNPA): mVBNPA¼MSt/[(3AN/N%)� (MVBNPA�MSt)],
which was conversion equation according to the following
equations: N%¼ 3 mAN/(nMStþmMVBNPA)� 100%, mVBNPA¼m/
(nþm) (MVBNPA was the molecular weight of the VBNPA unit and
MSt was the molecular weight of St unit; AN was the atomic
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Fig. 2. Kinetic plots of the RAFT copolymerization of styrene and VBNPA in DMF with
the molar ratio [St]0:[VBNPA]0:[AIBN]0:[CPDN]0¼ 500:500:1:3 at 60 �C.
weight of N; N% was the concentration of N in the copolymer).
N% in the measured copolymer was 7.90%, therefore the value of
mVBNPA was 0.39, which was almost equal to the result 0.42
calculated from NMR. Furthermore, chain extension experiment
was carried out using the obtained poly(St-co-VBNPA) as the
macro-RAFT agent and styrene as the second monomer to
validate the activity of the original polymer. Typical GPC plots
shown in Fig. 5 explicitly illustrated the changes in Mn and Mw/
Mn before (A) and after (B) the chain extension reaction, which
was carried out in solution (DMF, 50% v/v) at the ratio of [St]0/
[poly(St-co-VBNPA)]0¼ 500:1 at 110 �C. The chain extension
resulted in 30.3% conversion after 20 h polymerization. The
molecular weight increased from 13,300 to 23,100, which was
little lower than the calculated value, 29,100. The molecular
weight distribution values increased from 1.16 to 1.21, which may
be caused by the bimolecular termination of the propagating free
radicals and the dead polymer existing in the original copolymer
as reported in the literatures [41,42]. The GPC trace of chain
extended polymer showed a side peak in same position with
original macro-RAFT agent, which indicated the existence of dead
chains in the original copolymer. However, the most of the chains
were still living, and the copolymerization of St and VBNPA was
well controlled on RAFT polymerization mechanism.
Fig. 4. Typical 1H NMR spectrum of copolymer (Mn¼ 13,300, Mw/Mn¼ 1.16).
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3.2. ICP-AES analysis of copolymer–Cu(II)
and copolymer–Eu(III) complexes

ICP-AES was widely used for the determination of metal ions
[43–45]. In this work, ICP-AES was also used for the
determination of metal ions attached to the copolymer. The
amounts of metal ions coordinated with the copolymer were
analyzed by ICP-AES as shown in Table 1. The number of metal
ion per polymer chain (N) was increased with the molecular
weight of copolymer, and N was calculated by the following
equation:

NzC �Mcopolymer=Mmetal ion

in which C¼ Cmetal ion/Ccopolymer, Cmetal ion and Ccopolymer are the
concentration of metal ion and copolymer (g/mL), respectively;
Mcopolymer and Mmetal ion are molecular weights of copolymer and
metal ion, respectively.

3.3. FT-IR spectroscopic analysis of copolymer–Cu(II)
and copolymer–Eu(III) complexes

Fig. 6 shows the FT-IR spectra of poly(St-co-VBNPA) and its
copolymer–metal complexes. The copolymer sample was sub-
jected to infrared spectroscopic analysis that showed absorption
peaks characteristic for PAN units: the absorption peaks at
1558 cm�1 and 1628 cm�1 are related to the 2-substituted
pyridine ring; the absorptions at 1283 cm�1 are corresponding to
the aryl–O– bond and the absorptions at 1072 cm�1 are corre-
sponding to CH2–O– bond. The inclusion of the metal ion in
a complexed form may be indicated by the absorption peak at
about 1599–1655 cm�1 as well as by shifting the absorption
peaks of the organic functionalities due to the polarizing effect of
such metal ions [21,46–48].
Table 1
Metal ion concentrations measured by ICP-AES

Copolymer Metal ion C N

Mn¼ 8200, Mw/Mn¼ 1.41 Cu(II) complex 3.75 4.81
Eu(III) complex 6.00 3.24

Mn¼ 13,300, Mw/Mn¼ 1.16 Cu(II) complex 2.45 5.09
Eu(III) complex 4.16 3.55

Mn¼ 31,000, Mw/Mn¼ 1.11 Cu(II) complex 1.56 7.57
Eu(III) complex 2.95 6.01
3.4. UV–vis spectra of polymer–Cu(II)
and polymer–Eu(III) complexes

Fig. 7 reveals the characteristic UV–vis absorbance of poly(St-
co-VBNPA) (a), poly(St-co-VBNPA)–Cu(II) complex (b) and poly(St-
co-VBNPA)–Eu(III) complex (c). Comparing with curve (a), there
was a new absorbance peak at about 555 nm in curve (b), which can
be attributed to the red-shift effect of the coordination between
Cu(II) and PAN unit in complex. Similar results were reported in the
literatures [1,15,25,49–51]. These results showed that Cu(II) had
been bonded to PAN unit. When comparing curve (c) with curve (a),
the absorbance peak at about 520 nm had no obvious change,
which may be due to that the amount of Eu(III) loaded in copolymer
was low. But, a new absorbance peak at 350 nm was found in curve
(c), which was ascribed to PhCOCH2COPh unit.

3.5. Fluorescence spectra of copolymer–Cu(II)
and copolymer–Eu(III) complexes

Europium (Eu)-based materials are of special interest in optical
excitation and emission because of their high luminescent
quantum efficiencies. The details of Eu(III) (4f–4f) excitation and
emission spectra are particularly sensitive to the structural details
of the coordination environment [52–57]. Here, fluorescence
spectra of the obtained copolymer–Eu(III) complex and
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Fig. 9. DSC data of poly(St-co-VBNPA) and coordination polymer. (1) Poly(St-co-VBNPA),
Mn¼ 13,300, Mw/Mn¼ 1.16; (2) poly(St-co-VBNPA)–Cu(II) complex; (3) poly(St-co-
VBNPA)–Eu(III) complex.
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EuCl(PhCOCH2COPh)2 were investigated. The excitation and emis-
sion spectra were measured at room temperature in the solution
(DMF). The excitation spectra of poly(St-co-VBNPA)–Eu(III) com-
plex and EuCl(PhCOCH2COPh)2, obtained by monitoring the emis-
sion of the Eu(III) ions at 611 nm, were quite different (Fig. 8). There
were two strong absorptions, 305 nm and 403 nm, appeared in the
excitation spectrum of EuCl(PhCOCH2COPh)2. While in the case of
poly(St-co-VBNPA)–Eu(III) complex, it showed a broad band rang-
ing absorption from 300 nm to 430 nm. This result indicated that
the emission of the copolymer–Eu(III) was sensitized by the ab-
sorption of the ligand in the UV region rather than directly by the
Eu(III) ion absorption and Eu(III) had been bonded to PAN unit.
Moreover, as can be seen from Fig. 6, the emission spectra of the
copolymer–Eu(III) and the corresponding EuCl(PhCOCH2COPh)2,
excited at 359 nm, both showed three major emission bands at
590 nm, 611 nm, and 703 nm, corresponding to the 5D0 / 7FJ (J¼ 1,
2, 4) transitions. Among these transitions, 5D0 / 7F2 was the
strongest. However, no fluorescence was detected in poly(St-co-
VBNPA)–Cu(II) complex.
3.6. Thermal analysis of copolymer–Cu(II)
and copolymer–Eu(III) complexes

The glass temperature (Tg) values of the copolymer and
coordination polymers were measured by differential scanning
calorimetry (DSC). Fig. 9 shows that the synthesized copolymer
poly(St-co-VBNPA) had a single Tg at 116.1 �C (Fig. 9, curve 1), which
indicated the formation of random copolymer. A great deviation of
Tg between poly(St-co-VBNPA) and its Cu(II) complex could be
observed. The Tg value of copolymer–Cu(II) complex was 177.9 �C
(Fig. 9, curve 2), which was higher than that of poly(St-co-VBNPA).
Similar results have been reported in the literatures [21,31–33,42].
While in the case of copolymer–Eu(III) complex, the resulting
material had an extrapolated thermal decomposition temperature
of 170.8 �C (Fig. 9, curve 3).

4. Conclusion

The copolymer bearing PAN unit in side chain was synthesized
using the RAFT technique. The obtained polymer showed well-
defined structures with controlled molecular weight and narrow
molecular weight distribution. Poly(St-co-VBNPA)–Cu(II) and
poly(St-co-VBNPA)–Eu(III) complexes were prepared via the Cu(II)/
Eu(III) complexation chemistry. The resultant polymeric complexes
were characterized by FT-IR spectra and UV–vis spectra, and the
results showed distinct difference between the resultant polymeric
complexes and the starting materials. The excitation spectra, fluo-
rescence spectra and thermal analysis of the metal ion coordinated
poly(St-co-VBNPA) demonstrated the successful incorporation of
metal ion with PAN unit.
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